Acta Cryst. (1967). 23, 747

Refinement of the Crystal and Molecular Structure of $meso-\alpha, \alpha'$ -Dimethylglutaric Acid

By Ezio Martuscelli, Ettore Benedetti, Paolo Ganis and Carlo Pedone

Sez. VII, Centro Nazionale di Chimica delle Macromolecole, Istituto Chimico, Università di Napoli, Via Mezzocannone 4, Napoli, Italy

(Received 3 March 1967)

The crystal and molecular structure of *meso-* α, α' -dimethylglutaric acid has been determined by threedimensional X-ray crystallographic methods. Bond lengths and angles have been calculated and are consistent with the currently accepted values for aliphatic compounds. The crystals are triclinic with space group $P\bar{1}$ and cell dimensions a=9.90, b=8.35, c=7.32 Å; $\alpha=119^\circ$; $\beta=72^\circ$; $\gamma=126^\circ$.

Introduction

The determination of the crystal structure of $meso-\alpha, \alpha'$ dimethylglutaric acid (DMGA) forms part of a program of research in progress in our laboratory on the structure of low molecular weight model compounds in which atomic groups may be found similar to those present in high molecular weight compounds. A preliminary report on the structure of DMGA has already been given (Ganis, Pedone & Temussi, 1964). The manner in which the molecules are associated in rows in the crystal lattice was established from hOl and hkOintensities. This paper describes the refinement of the approximate structure with the use of three-dimensional data and discusses the conclusions of a molecular vibration analysis.

Experimental

DMGA crystallizes from water. The cell dimensions were determined from Weissenberg photographs of a crystal mounted about the a, b and c axes.

Crystal data

meso- α, α' -Dimethylglutaric acid (DMGA) C₇O₄H₁₂, M = 160, m.p. 127 °C Triclinic, $a = 9.90 \pm 0.02$, $b = 8.35 \pm 0.02$, $c = 7.32 \pm 0.02$ Å; $\alpha = 119^{\circ} \pm 30'$, $\beta = 72^{\circ} \pm 1^{\circ}$, $\gamma = 126^{\circ} \pm 30'$. $d_{\text{RX}} = 1.24$ g.cm⁻³ (with Z=2), $d_{\text{exp}} = 1.24$ g.cm⁻³. Space group is $P\overline{1}$ as confirmed later in the analysis.

Three-dimensional intensity data $(0kl \cdots 5kl, hk0 \cdots hk4)$ were recorded by the equi-inclination method with Cu K α radiation. The intensities of 1319 observed reflexions were estimated visually. Lorentz and polarization corrections were applied in the usual way and the reflexions were placed on a common scale by the method of Rollett & Sparks (1960). No absorption corrections were applied.

Three-dimensional refinement

Three-dimensional refinement of the structure was carried out by the differential synthesis method. The scat-

Table 1. Final fractional atomic coordinates and their standard deviations (Å)

	x/a	y/b	z/c	$\sigma(x)$	$\sigma(y)$	$\sigma(z)$
C(1)	0.1740	0.2695	0.1293	0.0025	0.0027	0.0036
C(2)	0.3133	0.5245	0.2286	0.0025	0.0029	0.0038
C(3)	0.4009	0.5348	0.3738	0.0031	0.0036	0.0052
C(4)	0.2495	0.6802	0.3440	0.0025	0.0027	0.0037
C(5)	0.1750	0.6933	0.2031	0.0026	0.0027	0.0037
C(6)	0.2964	0.7847	0.0454	0.0048	0.0047	0.0059
C(7)	0.0969	0.8268	0.3313	0.0027	0.0027	0.0037
O(1)	0.0303	0.2298	0.1930	0.0020	0.0023	0.0031
O(2)	0.2242	0.1739	0.9685	0.0022	0.0024	0.0032
O(3)	0.1830	0.0137	0.4669	0.0023	0.0026	0.0039
O(4)	0.9483	0.7490	0.3046	0.0022	0.0025	0.0037
H(2)	0.400	0.576	0.108			
H(3)a	0.421	0.671	0.519			
H(3)b	0.324	0.388	0.402			
H(3)c	0.519	0.551	0.302			
H(4)a	0.158	0.633	0.464			
H(4)b	0.320	0.839	0.428			
H(5)	0.071	0.535	0.123			
H(6)a	0.325	0.945	0.092			
H(6)b	0.409	0.789	0.036			
H(6)c	0.241	0.684	0.894			
H(1)	0.122	0.013	0.903			
H(7)	0.894	0.856	0.311			

tering factors of Berghuis, Haanappel, Potters, Loopstra, MacGillavry & Veenendaal for C and O (1955) and of McWeeny for H (1951) were used. After several cycles with the same isotropic temperature factor for all the atoms (B=4 Å²), the R index ($\Sigma ||F_o| - |F_c||/$ $\Sigma |F_o|$) was 0.19, not including the contribution due to the hydrogen atoms. At this stage, individual anisotropic temperature factors were assigned to the C and O atoms and, after few cycles the R value dropped to 0.128.

The contribution of the hydrogen atoms was included assuming calculated positions with C-H and O-H length equal to 1.08 Å with the same isotropic factor B=4.0 Å². The refinement was stopped when the average shift in the atomic coordinates in terms of their standard deviations was less than 0.5σ , except

Table 2. Comparison of observed and calculated structure factors

h k 1	7.	7 <u>,</u> h:	k 1 - 1	· 7.	b k 1	7.	۲,	b k 1	7	7	b k 1	7	P.,		P.	P.,	b k 1	7	۲.		7	۶.
001	3.7 5.8 -	4.9 0 7.9 0	75 C	.6 - 0.3	140	8.4	8.0 0.1	202	15.7	-16.2	241	3.1	2.3	305	1.1	1.2	343	9.2	- 5.0	412	13.4	13.5
003	4.4 2.2	5.2 0 2.1 0	81 0).6 - 0.3).3 - 0.3	141 141	2.1 11.9 -	2.5	203	2.9	- 2.4 3.7	242	1.7	- 0.8	306	0.4	0.2	344	2.0	- 1.7	115	1.7	-10.0
005	1.7 4.0	1.7 0 3.8 0	84 1 86 C	.0 1.2).4 - 0.8	141	4.5 2.6 -	3.0 2.6	204	9.8 1.6	- 9.9	242	22.8 6.3	-25.9	310	4.6	- 6.1	348	0.4	0.2	415	1.8	1.
007	3.1 - 5.8 -	2.0 1	0036 0136	.2 37.7	142	0.6	1.1	205	3.2	- 4.0	243	0.5	0.8	311	4.5	5.0	345	9.2		111	9.3	9.1
0 1 1 0 T 1	22.7 2	3.5 T	0149 029	1 43.2 .4 -12.2	142	2.6 -	1.6	206	1,1	- 1.3	2 4 3	1.8	- 2.6	117	15.8	15.6	115	0.4	0.5		2.4	- 2.4
012	0.4	0.8 T 8.7 1	0211 03 (.6 -20.4	- T 4 3 - T 4 3	4.7 -	4.2	210	19.0	-19.1	244	1.7	1.7	312	17.0	-17.8	350	1.5	- 1.0	111	1.0	2.0
	1.4 3.1 -	0.1 T 2.4 1	03 3 04 8	1.2 - 1.1 1.2 8.3	143	3,1 2,1	2.0	211 211	22.3	-19.8	243	0.6	0.3	312	9.2	9.4	11	17.5	17.2	115	3.6	- 3.2
6 T 4 0 1 5	9.2 -1 0.8 -	1.7 T 0.8 1	04 9 05 1	.2 - 5.2	144	5.5 - 5.2	4.2	211	13.9 9.4	14.3 8.2	245	11.4	-11.3	313	1.1	1.5	357	2.1	1.9	Ì	1.4	- 13
016	5.0 -	3.4 T	05]	1.5 - 3.2 1.7 3.6	144	3.7 8.9 -	3.7 8.7	212	15.6 30.3	-14.1 -33.0	245	0.9 0.8	- 0.9	313	3.8 0.4	- 5.9	332	7.4	- 6.5	4 2 0	3.8	- 2.7
017	2.9	2.8 1	102	.0 27.5	143	0.9	0.7	212	13.4	-20.4	2 5 0	1.1	- 1.2	314	3.5 12.4	3.2 -14.0	333	1.0	- 0.9 - 0.4	421	6.3 0.8	- 6.5
020	27.0 -3	0.3	114	.7 - 3.6	147	0.6 -	0.2		2.9	- 2.5	230	13.2	13.0	314	6.6 0.4	- 6.1	333	1.0 3.1	- 0.4 - 2.6	411	2.9	- 4.5
021	22,1 -2	2.4 1	T 1 12	.2 12.4	130	5.2	3.4	213	1.6	0.0		6.2	- 5.6	114	3.1	- 2.7	334	1.9	- 3.9	111	1.8	1.7
022	6.6	7.7	1219	.618.1	Ťźi	15.9 -	4.1	214	3.3	- 3.5	252	1.3	- 1.1	314	3.5	3.9	335	0.5	- 2.6	111	18,1	-19.6 0.6
023	18.6 -1	8.8 1	12 2	.9 33.2	197	0.8	0.1	213	1.9	- 1.9		4.7	- 3.2	312).; 0.j	- 0.5	333	0.9	- 0.9	113	3.0	4 7
024	5.7 -	7.3 1	1 3 2	.2 - 2.2	152	6.0	5.0	215	3.4	4.5	2 2 3	0.4	0.1	320	4.4	3.9	337	0.1	0,1	- 113	1.6	- 0,1 - 4,0
025	1.9 -	2.0 1	1 j 0	.6 0.1	152	0.6 -	0.2	216	4.7	- 4.8	222	4.9	- 3.2	1 2 1	20.0	2.3	360	8.0	- 1.7	111	1,1	- 0,5 - 1,9
026	2.2 -	2.6 1	14 7	1 7.0	1 2 3	0.4	0.4	218	4.3	5.7	254	0.1	0.7	111	3.4	8.1		0.3	- 0.9	414	1,1	- 1.9
0] 1	9.6 -1	9.4 1		.4 - 7.2	153	2.2	2.9	218	1.1	- 1.1	155	0.6	0.7	111	0.4	0.3	111	1.0	3.1		8.0 6.0	- 3.9
032	7.8 9.6 -	7.6 T 8.4 1	15 0	.4 0.3	154	0.4	0.5	220	6.7	- 5.2	255	2.1	2.1	111	6.1	8.0	111	4,1	3.6		1.3	- 3.5
033	7.1 -1	7.5 T 5.0 T	16) 1 <u>7</u> 2	.5 - 3.3	151	1.3 9.3 -	1.5	221	12.0	9.8	260	3.6	- 3.5	111	3.3	2.7	111	1.2	- 1.2		13	- 1.5
034	6.3 - 4.5	5.5 1 4.7 1	17 3	.4 - 2.8	155	2.7	2.7	227	4.5	- 4.1	261	0.7	0.8	111	12.5	-12.4	111	1.0	1.0	110	4.3	
035	3.1 -	2.6 1 0.6 1	20 17 21 0	.6 -17.6	158	0,1 3.3 -	0.1 2.4	222	0.7	1.0	261	2.4	- 1.7	324	4.8		111	1.0	1.0		0.3	- 0.1
036	1.3	0.6 1		.4 2.4	161	2.6 2.4 -	2.2	222	8.2 2.1	9.7 1.8	262	2.8	- 2.2	328	2.7	2.4	111	0.7	- 0.0	- 11		9.0
0.38	0.8	0.5 1	2 1 1	.4 - 7.0		7.8 -	7.8	2 2 3	3.5	3.5	262	0.2	0.6 - 1.8	325	0.9	0.7	3 6 6	0.7	- 0.9	H	2.1	- 1.6
041	5.0 -	3.8	2 39	. 48.5	162	4.4	4.6 3.1	223	16.7	- 7.8	13	0.9 1.7	- 0.3 1.6	325	2.3	- 1.6	371	1.2	- 1.3		10.4	9.4
042	3.7 -	3.6		.2 - 2.9	162	6.4	6.0		4.4	- 4.5	264	0.3	0.3	326	2.2 0.3	- 2.1	373	0.5	- 0,8	411	0.8	0.8
043	8.1 - 0	6.7 1			155	1.3	0.9	225	4.2	- 4.1	265	0.8	- 0,7 0,8	327	0.3 1.1	0.0	373	1.8	- 1.8 - 1.8	- 11	18.3	18,4
044	0.8 -	0.9 1		.2 2.6	111	0.6	0.8	223	1.4	1.2		0.9	- 1.7	;;;;).) 47.0	- 2.9 -41.9	3	0.3 0.6	0,1 0,4	434	2.7	- 2,2
045	0.8 -	0.6 1		.4 3.4	161	3.2 -	3.0	226	2.6	1.8	270	0.8	- 0.8	311	8,4	6.9 - c.7	312	1.6	1.5 - 3.4	111	10.9	-11,8 1,9
016	1.0 =		5 7	3 - 7.3	165	3.1 -	3.0		0.9	1,1	271	1.2	1.6	111	7.4	- 7.8	313	2.2	- 2,1 1,2	:;;	0.6 3.6	0.9 -).)
018	0.9 (0.6 1 I 0.5 T I	15 i 16 i	.0 1.2	167	1.1	0.8	2] 0	3.2	- 3.3	3	1.3	1.0	111	13.0	14.0		0.9	0.9	:;;	1.7	- 1.7
031	1.7 - (0.8 1 2 0.8 T 2	2 6 2 171	.1 - 2.1	170	1.8	2.2	231	6.6	6.9	273	1.4	1.3	រវរ	2.2	2.7	312	1.5	- 1,1	4 4 0	0,9 0,4	
052	3.9).8 1 1).1 1 1		4 1.1	171	1,7 - 2,4	1.6 a 1.9 a	2 Ĵ 1 2] T	1.7	- 2.5	278	0.5	0.8	įįį	0.9	0.4		2.7	2.9		9.4	7.9
053	0.6 - 0		0 5	.7 5.3	171	1.1 - 4.7	1.0	232	2.9 19.2	2.3 13.8	276	1.0	- 1.0	111	7.1	7.3	400	9.7	5.9		3.7	- 3.3
034	2.1		1 3	.2 - 5.3	172	4.5	4.0 2 3.0 2	232	0.J 3.6	0.1 4.4	280	1,1 1.4	1.0	334	8.1	- 7.6	101	9.2	6.4		3.4	- 3.4
056	1.1		7 2	.9 4.2	173	1.9	1.6		1.7	1.7	2 2 2	0.3 9.8	0.1 - 0.7	333	1.6 1,1	1.3	X 0 2 4 0 3	6.3	4.3		4,0	4.C 9.0
058	1.6 - 1	.4	2 15	1 15.6	111	0.9 -	1.0	53	3.9	- 1.9	291	1.5 0.4	- 1.5	336	0.2 1.2	- 1.3	X 0 3 4 0 4	1.0	0.9	111	4,4	- 3,4 1,9
061	4.9 - 3	.7 1	2 6	3 -10.2	178	0.7 -			2.1	- 1.5	293	0.9	- 0.9	337	0.7 2.4	- 1.0 - 2.1	405	4,8 0.3	4,8	4 4 4	11,4	-12,6 - 2,7
062	2.8	.5 1 1	3 2	7 2.7	181	0.1 0.4	0.4	ij.	3.9	3.3	300	1.5	- 2.0	140	3.5	19.6 3.4	406	3.9	3.6	449	2.6	- 0,7 1,8
063	2.2 2	61 1j 14 1j	3 1.	.3 - 1.4	182	0.1	0.5	135	4.7	4.6	joe	4.4	2.7	141	10.1	16.5	410	3.6 6.8	3.4 0.3	446	4,5 9,5	- 0,6
064	3.6 - 3	1.6 Tj 1.1 1j	4 2	7 - 2.3		0.3	0.2 J	236	0.1	0.4	302	17.4	-18.4	142	3.4	- 2.3 - 2.7	411	6.5	5.7	4 5 0	9.2	- 0,3
0 6 7	1.1 - 0		4 1. 5 1.	7 1.9	193	1.4 -	1.J 2 9.4 2	237	0.j J.1	- 0.2	303	8.0	1.4	11	14.3	-14.7	411	3.6	- 7.5		4.4	2.5
070	1.3	.1 1]	5 3. 7 1.	1 - 3.2	200	24.5 -2	1.8 ž 3.2 ž	241	0.6	0.5 3.6	304	8.0 2.3	0.2	141	6.2	- 6.7	412	9.0	8.0	454	5.5	• 6.7 • 6.7
072	4.5 - 4	1.4 1] 1.4 1 4	0 6.	.9 1.1 .3 6.0	201 202	11.1 -1 31.3 -2	1.3 Z	E 4 1	3-3	- 4.7	-	÷		ĴĴĴ	11.9	13.6	412	12.4	-11.8	157	7,9	- 1.1

Table 2 (cont.)

8.8	1	·. ·.	•	# 1	*	. 7 e	h k	1	•	Р _е	h k 1	۶.	P.e	h h 1	۶.	7 _c	h	¥ 1	۶.	7.	•	k 1	۳.	۲.
42444444444444444444444444444444444444	2112448550111722323744455001122114901123456012348676012348556470011117222344556700111172233444556011	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3]2569855946469749142]8811]74]37591975383434900492013 93951]9946237370222274947942904434878	x x x x x x x x x x x x x x x x x x x	64659070219111405510999400122372194888277721941450507928236281997320544055901223725494888277721905371370633908440553713706338111227725064443556	$\begin{array}{cccccccccccccccccccccccccccccccccccc$,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	345601112222222222222222222222222222222222	4.31,51,22,35,33,4,64,23,54,33,34,54,35,30,53,00,00,00,00,00,00,00,00,00,00,00,00,00	$\begin{array}{c} -3.8\\ -3.8\\ -2.3\\ -2.3\\ -2.3\\ -2.3\\ -2.3\\ -3.8\\$	\$	$\begin{array}{c} 3.7\\ 1.4\\ 1.4\\ 1.4\\ 3.0\\ 9\\ 2.0\\ 3.0\\ 3.5\\ 9\\ 2.0\\ 3.0\\ 3.5\\ 9\\ 2.0\\ 3.0\\ 3.5\\ 9\\ 2.4\\ 3.0\\ 3.5\\ 3.0\\ 0.9\\ 2.4\\ 4.2\\ 1.4\\ 3.0\\ 0.9\\ 1.4\\ 2.2\\ 1.4\\ 3.0\\ 0.9\\ 1.2\\ 2.2\\ 2.4\\ 1.3\\ 1.4\\ 4.2\\ 2.2\\ 1.4\\ 3.0\\ 0.9\\ 1.2\\ 2.2\\ 2.4\\ 1.3\\ 1.4\\ 0.5\\ 5.5\\ 2.2\\ 2.4\\ 1.3\\ 1.4\\ 0.6\\ 1.4\\ 2.2\\ 5.7\\ 1.0\\ 3.6\\ 0.8\\ 4.2\\ 2.2\\ 5.7\\ 1.0\\ 3.6\\ 0.8\\ 4.2\\ 2.2\\ 5.7\\ 1.0\\ 3.6\\ 0.8\\ 4.2\\ 2.2\\ 5.7\\ 1.0\\ 3.6\\ 0.8\\ 4.2\\ 2.2\\ 5.7\\ 1.0\\ 3.6\\ 0.8\\ 4.2\\ 2.2\\ 5.7\\ 1.0\\ 3.6\\ 0.8\\ 4.2\\ 2.2\\ 5.7\\ 1.0\\ 3.6\\ 0.8\\ 4.2\\ 2.2\\ 5.7\\ 1.0\\ 3.6\\ 0.8\\ 4.2\\ 2.2\\ 5.7\\ 1.0\\ 3.6\\ 0.8\\ 4.2\\ 2.2\\ 5.7\\ 1.0\\ 3.2\\ 0.8\\ 1.4\\ 1.0\\ 1.4\\ 1.0\\ 1.2\\ 1.0\\ 1.2\\ 1.0\\ 1.2\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0$	$\begin{array}{c} 3.5 \\ 3.1 \\ 3.1 \\ 0.5 \\ - 2.5 \\ 0.7 \\ - 2.8 \\ 0.1 \\ - 2.8 \\ 0.1 \\ - 2.8 \\ 0.1 \\ - 2.8 \\ 0.6 \\ - 2.8 \\ 0.6 \\ - 2.8 \\ 0.6 \\ - 2.8 \\ 0.6 \\ - 2.8 \\ 0.6 \\ - 2.8 \\ 0.6 \\ - 2.8 \\ 0.6 \\ - 2.8 \\ 0.6 \\ - 2.8 \\ 0.6 \\ - 2.8 \\$	77777777777777777778888888888888888888	$\begin{array}{c} \textbf{4,72} \\ \textbf{4,72} \\ \textbf{0,63} \\ \textbf{3,90} \\ \textbf{1,63} \\ \textbf{2,2,00,76} \\ \textbf{4,2,12} \\ \textbf{4,2,2,00,76} \\ \textbf{3,91} \\ \textbf{1,63} \\ \textbf{5,57,13} \\ \textbf{1,65} \\$	4.40 4.10 4	333333333333333333333333333333333333333	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2784933351944273359688424635988424643528125669103595816610441364253397748884400000033544113633348867001352001212564844000000335211045526910352001348816104413643136488122533501220120122012111132633920122012111113263390012200122001220012200122001220012200	$\begin{array}{c} 2.68 \\ -60.1 \\ -7.1 \\ -$	$\begin{array}{c} 1 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	89235572335572345578523455785234555789345578955745578557833567834544444444444444444444444444444444444	0.664411937991648163366223853466540010110301030103010.3010.3010.3010.3010	$\begin{array}{c} 0.7\\ -0.4\\ -1.0\\ 2.4\\ -3.0\\ -$

•

Table 3. Peaks heights (e.Å⁻³) and curvatures (e.Å⁻⁵) Values in parentheses are from F_c differential syntheses.

	Q obs. (calc.)	$-A_{hh}$ obs. (calc.)	$-A_{kk}$ obs. (calc.)	-Au obs. (calc.)	A_{hk} obs.	Ani obs. (calc.)	A_{kl} obs. (calc.)
$\mathbf{C}(1)$	6.47	47.9	52.9	38.6	2.73	1.10	1.93
-(-)	(6.59)	(48.3)	(51.4)	(38.3)	(2.71)	(1.10)	(1.93)
C(2)	6.41	48.7	48.3	35.8	2.72	-1.18^{\prime}	1.64
-(-)	(6.45)	(48.8)	(47.5)	(35.9)	(2.75)	(-1.19)	(1.68)
C(3)	5 ∙27	39.3	38.7	26.6	2.28	-1.34	1.48
- (-)	(5.42)	(39.8)	(38.7)	(27.8)	(2.28)	(-1.34)	(1.53)
C(4)	6.59	`49 ∙0´	` 51∙4	` 37∙5´	2.62	-1.15	`1·59´
• •	(6.60)	(49.5)	(52.4)	(36.1)	(2.68)	(-1.17)	(1.65)
C(5)	6.50	47.3	51.0	` 37·4´	2.70	-1.12	̕74
.,	(6.60)	(48.0)	(50.4)	(37.6)	(2.65)	(-1.14)	(1.78)
C(6)	4.72	25.3	29.9	23.2	Ì1·57́	-0.43	1.17
	(4.85)	(25.3)	(30.5)	(22.6)	(1.45)	(-0.44)	(1.11)
C(7)	6.64	45.1	52.1	37.6	2.40	-0.71	1.53
	(6.80)	(45.8)	(50.7)	(37.9)	(2.47)	(-0.73)	(1.58)
O(1)	8.63	59.6	61.2	44.2	2.95	- 0.99	1.75
	(8.70)	(59.8)	(59.6)	(44.8)	(3.05)	(-1.03)	(1.81)
O(2)	8.32	55+5	59.3	42.7	3.08	-1.06	1.60
	(8.38)	(55-2)	(57.4)	(42.9)	(3.09)	(-1.06)	(1.63)
O(3)	7.93	52.4	54.2	34.9	2.76	-1.01	1.19
	(7.92)	(52.1)	(51.1)	(35.4)	(2.77)	(-0.97)	(1.24)
O(4)	7.92	56.3	55-1	37.5	3.14	-1.31	1.40
	(8.13)	(55.8)	(54.8)	(37.8)	(3.11)	(-1.25)	(1.42)

Table 4. Intramolecular distances												
and angles with standard deviations												
Distances			•									
C(1) = C(2)	1.499 Å	3·8 × 10−3 Å	σ									
C(2) - O(1)	1.209	3.3×10^{-3}	σ									
C(1) - O(2)	1.322	3.8×10^{-3}										
C(2) - C(3)	1.511	5.9×10^{-3}										
C(2) - C(4)	1.541	3.9×10^{-3}										
C(4) - C(5)	1.515	4.9×10^{-3}										
C(5) - C(6)	1.509	6.4×10^{-3}	In F									
C(5) - C(7)	1.507	3.8×10^{-3}	The									
C(7) - O(4)	1.267	4.0×10^{-3}										
C(7) - O(3)	1.247	3.6×10^{-3}	carc									
			tion									
			Tab									
Angles			cula									
C(2)-C(1)-O(1)	123·3°	2·7 × 10 ^{−1} °	C(5)									
C(2) - C(1) - O(2)	113.4	2.3×10^{-1}										
C(4) - C(2) - C(3)	111.5	2.9×10^{-1}										
C(1) - C(2) - C(3)	108.8	2.7×10^{-1}	and									
C(1) - C(2) - C(4)	111.6	$2 \cdot 1 \times 10^{-1}$										
C(4) - C(5) - C(6)	114.9	2.8×10^{-1}										
C(4) - C(5) - C(7)	110.4	2.8×10^{-1}	No									
C(6) - C(5) - C(7)	107.9	2.9×10^{-1}	Imo									
C(2) - C(4) - C(5)	114.2	2.8×10^{-1}	lina									
C(5) - C(7) - O(4)	119.0	2.5×10^{-1}										
C(5)-C(7)-O(3)	119-3	2.6×10^{-1}										
$C(1)-C(2)-C(4) \wedge C(2)-C(4)-C(5)$	296.4	3.0×10^{-1}										
$C(2)-C(4)-C(5) \land C(4)-C(5)-C(7)$	172.9	3.0×10^{-1}										
$O(1)-C(1)-C(2) \land C(1)-C(2)-C(3)$	97.2	3.0×10^{-1}										
$O(3)-C(7)-C(5) \land C(7)-C(5)-C(6)$	73.9	3.0×10^{-1}										

for the hydrogen atoms; R was 0.117. The final atomic coordinates together with the corresponding standard deviations (Cruickshank, 1949) are reported in Table 1. In Table 2, observed and calculated structure factors are listed. In Table 3 the peak heights and the curvatures of electron density are compared at the points corresponding to the atomic positions.

The estimated standard deviations of electron density and of its first derivatives are:

$$\sigma(\varrho) = 0.07 \text{ e.A}^{-3}$$

$$\sigma(A_h) = 0.12, \ \sigma(A_k) = 0.14, \ \sigma(A_l) = 0.14 \text{ e.Å}^{-4}.$$

Molecular and crystal structure

In Fig. 1 the molecular model of DMGA is presented. The interatomic bond distances and angles with the calculated values of their estimated standard deviations (Cruickshank & Robertson, 1953) are listed in Table 4. The equations of the least-squares plane calculated for the C(1)C(2)O(1)O(2) atoms and for the C(5)C(7)O(3)O(4) atoms are respectively

$$5 \cdot 878x - 6 \cdot 456y + 6 \cdot 687z - 0 \cdot 018 = 0$$

$$1.637x - 5.573v + 6.721z + 2.214 = 0$$

No significant deviation from the plane was observed [maximum deviation -0.008 Å for C(1) and -0.008 Å

Fig.1. Molecular model of meso- α, α' -dimethylglutaric acid.

the centres of symmetry at 0,0,0 and $0, 1, \frac{1}{2}$ are planar within experimental error.

 $\sigma_1 = C(1)C(2)C(4) \wedge C(2)C(4)C(5) = 296.4^{\circ}$

The values of internal rotation angles

and

 $\sigma_2 = C(2)C(4)C(5) \land C(4)C(5)C(7) = 172.9^{\circ}$

show that the atomic grouping $C-CH-CH_2-CH-C$

CH₃ CH₃

has a similar conformation to that found for isotactic polypropylene (Natta & Corradini, 1960).

In Figs. 2 and 3 the projections of the DMGA structure along [100] and [001] are shown. The shortest intermolecular distances are also indicated. The structure consists of hydrogen-bonded molecules directed along the $\mathbf{b} + \mathbf{c}/2$ crystallographic axis. A distance of 2.642 ± 0.010 Å has been found between the oxygen atoms of carboxylic groups of adjacent molecules repeated by a symmetry center.

Molecular vibration analysis

In Table 5 are shown the coefficients b_{ij} of the temperature factor, which is in the form:

Temper	Temperature factors are in the form: $\exp[-(b_{11}h^2 + b_{22}k^2 + b_{33}l^2 + b_{12}hk + b_{13}hl + b_{23}kl)].$													
	<i>b</i> ₁₁	<i>b</i> ₁₂	b13	b ₂₂	b23	b33								
C(1)	0.0158	0.0246	-0.0011	0.0260	0.0157	0.0285								
C(2)	0.0164	0.0245	-0.0031	0.0260	0.0160	0.0314								
C(3)	0.0225	0.0296	-0.0165	0.0268	0.0243	0.0427								
C(4)	0.0169	0.0201	-0.0060	0.0211	0.0115	0.0325								
C(5)	0.0180	0.0242	0.0030	0.0250	0.0155	0.0274								
C(6)	0.0283	0.0410	0.0140	0.0410	0.0360	0.0406								
C(7)	0.0162	0.0230	-0.0012	0.0245	0.0140	0.0276								
O(1)	0.0173	0.0234	0.0030	0.0255	0.0120	0.0318								
O(2)	0.0175	0.0273	0.0012	0.0270	0.0020	0.0333								
O(3)	0.0180	0.0260	-0.0080	0.0272	-0.0030	0.0395								

Table 5. Final temperature parameters

Fig. 2. Projection of the meso- α, α' -dimethylglutaric acid structure along [100].

Table 6. Dimensions and	orientations	of the i	thermal	vibration	ellipsoids	relative
to the at	oms of meso-	α,α'-din	nethylg	lutaric aci	d	

			Angles for	med by U_i	semi-axes						
			with crystallographic axes			Direction cosines of U_i semi-axes					
	U_i	$\sqrt{[U_i/2\pi^2]}$	а	Ь	с	referred to a	an orthogonal	coordinate			
	(Å ² ×4)	(Å)	(°)	(°)	(°)		system*				
	$\int U_1 = 4.18$	0.23	55.9,	74.5,	76.9	0.8738,	0.4309,	0.2253			
C(1)	$\int U_2 = 5.29$	0.26	76.9,	126.6,	13.3	<i>−</i> 0·1806,	-0.1427,	0.9731			
	$U_{3} = 3.34$	0.20	142.8,	40.8,	87.3	-0.4515,	0.8910,	0.0469			
	$\int U_1 = 4.22$	0.23	51.8,	78.0,	76.7	0.9020,	0.3652,	0.2301			
C(2)	$\{ U_2 = 5.74 \}$	0.27	81.7,	121.2,	13.4	-0·2266,	<i>−</i> 0·0532,	0.9725			
• •	$U_{3} = 3.51$	0.21	140.6,	33.9,	92.0	<i>−</i> 0·3674,	0.9294,	-0.0348			
	$\int U_1 = 5.71$	0.27	103.8,	31.2,	93·0	0.3115,	0.9488,	-0.0525			
C(3)	$\begin{cases} U_2 = 8.00 \end{cases}$	0.32	110.5,	99.8,	39.0	-0.5845,	0.2349,	0.7766			
. ,	$U_{3} = 4.42$	0.24	25.1,	119.3,	51.1	0.7492,	-0.2113,	0.6278			
	$U_1 = 4.37$	0.23	16.0,	110.1,	80.4	0.9393,	-0.3002,	0.1661			
C(4)	$\{ U_2 = 6.15 \}$	0.28	80.2,	120.2,	10.7	-0·1833,	-0.0299,	0.9826			
.,	$U_{3} = 3.14$	0.20	102.5,	37.5,	82.2	0.2900,	0.9534,	0.0831			
	$\int U_1 = 4.54$	0.24	25.7,	105-2,	66.4	0.9128,	<i>−</i> 0·0777,	0.4008			
C(5)	$\begin{cases} U_2 = 4.96 \end{cases}$	0.25	90.6,	120-3,	24.4	-0·4061,	<i>−</i> 0·0725,	0.9109			
.,	$U_{3} = 3.58$	0.21	115.7,	34.7,	84•4	0.0418,	0.9943,	0.0977			
	$U_1 = 5.97$	0.27	95.9,	30.4,	119.1	0.5004,	0.7158,	-0.4871			
C(6)	$\begin{cases} U_2 = 9.09 \end{cases}$	0.34	38.8,	110.1,	43·8	0.6922,	0.0071,	0.7216			
	$U_{3} = 5.19$	0.26	128.2,	68.1,	60.5	-0.5199,	0.6983,	0.4919			
	$\int U_1 = 4.16$	0.23	39.4,	87.2,	83.5	0.9865,	0.1190,	0.1127			
C (7)	$\begin{cases} U_2 = 5.26 \end{cases}$	0.26	71.2,	129.5,	11.8	-0.0896,	-0.1843,	0.9787			
.,	$U_{3} = 3.41$	0.21	123.1,	39.6,	80·1	-0.1373,	0.9756,	0.1712			
	$\int U = 4.36$	0.23	49.6,	76.4,	97.3	0.9720,	0.1968,	-0.1281			
O(1)	$\{ U_2 = 7.22 \}$	0.30	125-2,	45.6,	160.7	<i>−</i> 0·1804,	0.2767,	-0.9439			
	$U_3 = 3.42$	0.21	119.9,	47.5,	72.3	<i>−</i> 0·1503,	0.9406,	0.3045			
	$\int U_1 = 4.60$	0.24	47.2,	79.6,	85.2	0.9640,	0.2522.	0.0843			
O(2)	$\{ U_2 = 8.24 \}$	0.32	116.4,	43·2,	162·2	0.0031,	0.3061,	-0.9520			
	$U_3 = 2.92$	0.19	125.7,	48·7 ,	72.9	<i>−</i> 0·2658,	0.9180,	0.2943			
	$\begin{bmatrix} U_1 = 4.47 \end{bmatrix}$	0.24	26.9,	99·1,	82.2	0.9851,	<i>−</i> 0·1055,	0.1359			
O(3)	$\{ U_2 = 9.98$	0.36	107.8,	44.9,	160.8	0.1610,	0.2868,	0.9444			
	$U_3 = 3.24$	0.20	109.6,	46.5,	72.6	0.0607,	0.9522,	0.2995			
	$U_1 = 4.22$	0.23	<u>39·3</u> ,	89.9,	73.7	0.9467,	0.1574,	0.2809			
O(4)	$\{ U_2 = 9.34 \}$	0.34	77.7,	131.4,	19.6	-0.2407,	-0.2339,	0.9420			
	$1 I_{2} = 3.44$	0.21	126.6	41.4	79.4	-0.2139	0.9594	0.1835			

* In this system the z axis is coincident with c, the y axis is normal to c in the bc plane, and the x axis is normal to the bc plane.

Fig. 3. Projection of the meso- α, α' -dimethylglutaric acid structure along [001].

Fig.4. Projection parallel to the row axis (b+c/2) of meso- α, α' -dimethylglutaric acid molecule and of U_2 semi-axes of thermal vibrational ellipsoids.

$$\exp\left[-(b_{11}h^2+b_{22}k^2+b_{33}l^2+b_{12}hk+b_{13}hl+b_{23}kl)\right].$$

The values of the three semi-axes of the ellipsoid of thermal vibration for each C and O atom are reported in Table 6. These parameters were calculated with a program written for an Elea 6001 computer (Coda, 1966). An evaluation of the thermal data shows that, for all atoms, one of the three semi-axes (U_2) is appreciably larger than the remaining two (U_1, U_3) . Correspondingly a larger mean square displacement in the U_2 direction is observed. As shown in Fig.4, the U_2 semi-axes are nearly orthogonal to the axis of the molecular rows $\mathbf{b} + \mathbf{c}/2$.

Nevertheless it is important to point out that the U_2 length corresponding to the oxygen atoms and to

carbon atoms of the methyl groups is larger than the U_2 length corresponding to the carbon atoms of the molecular skeleton. This situation is consistent with the results of analogous studies on non-substitute. dicarboxylic acids (Housty & Hospital, 1964, 1965, 1966) in which thermal vibration oscillations occur with a greater amplitude for the terminal atoms and in the same direction as in our compound. It is also interesting to note that the values of the semi-axis lengths are in agreement with those found for normal chain acids (Housty & Hospital, 1964, 1965, 1966).

Our results lead to the conclusion that, apart from the differences in the shape of rotational barriers around the single bonds, the molecule of DMGA is characterized in the solid state by a degree of rigidity similar to that of a non-substituted dicarboxylic acid.

The authors are grateful to Prof. P.Corradini for advice and helpful discussion, and to Dott. A.Coda who kindly supplied us with a crystallographic program.

References

- BERGHUIS, J., HAANAPPEL, IJ. M., POTTERS, M., LOOPSTRA, B. O., MACGILLAVRY, C. H. & VEENENDAAL, A. L. (1965). *Acta Cryst.* 8, 478.
- CODA, A. (1966). Ric. Sci. 36, 388.
- CRUICKSHANK, D.W. J. (1949). Acta Cryst. 2, 65.
- CRUICKSHANK, D. W. J. & ROBERTSON, A. P. (1953). Acta Cryst. 6, 698.
- GANIS, P., PEDONE, C. & TEMUSSI, P. A. (1964). Rend. Acc. Naz. Lincei, 36, 510.
- HOUSTY, J. & HOSPITAL, M. (1964). Acta Cryst. 17, 1387.
- HOUSTY, J. & HOSPITAL, M. (1965). Acta Cryst. 18, 753.
- HOUSTY, J. & HOSPITAL, M. (1966). Acta Cryst. 21, 29.
- MCWEENY, R. (1951). Acta Cryst. 4, 513.
- NATTA, G. & CORRADINI, P. (1960). Suppl. Nuovo Cimento, 15, 40.
- ROLLETT, J. S. & SPARKS, R. A. (1960). Acta Cryst. 13, 273.